Glass fiber (or glass fibre) is a material consisting of numerous extremely fine of glass.
Glassmakers throughout history have experimented with glass fibers, but mass manufacture of glass fiber was only made possible with the invention of finer machine tooling. In 1893, Edward Drummond Libbey exhibited a dress at the World's Columbian Exposition incorporating glass fibers with the diameter and texture of silk fibers. Glass fibers can also occur naturally, as Pele's hair.
Glass wool, which is one product called "fiberglass" today, was invented some time between 1932 and 1933 by Games Slayter of Owens-Illinois, as a material to be used as thermal building insulation. Slayter patent for glass wool. Application 1933, granted 1938. It is marketed under the trade name Fiberglas, which has become a genericized trademark. Glass fiber, when used as a thermal insulating material, is specially manufactured with a bonding agent to trap many small air cells, resulting in the characteristically air-filled low-density "glass wool" family of products.
Glass fiber has roughly comparable mechanical properties to other fibers such as polymers and carbon fibers. Although not as rigid as carbon fiber, it is much cheaper and significantly less brittle when used in composites. Glass fiber reinforced composites are used in marine industry and piping industries because of good environmental resistance, better damage tolerance for impact loading, high specific strength and stiffness.
The modern method for producing glass wool is the invention of Games Slayter working at the Owens-Illinois Glass Company (Toledo, Ohio). He first applied for a patent for a new process to make glass wool in 1933. The first commercial production of glass fiber was in 1936. In 1938 Owens-Illinois Glass Company and Corning Glass Works joined to form the Owens-Corning Fiberglas Corporation. When the two companies joined to produce and promote glass fiber, they introduced continuous Filament fiber glass fibers. Owens-Corning is still the major glass-fiber producer in the market today.
The most common type of glass fiber used in fiberglass is E-glass, which is alumino-borosilicate glass with less than 1% w/w alkali oxides, mainly used for glass-reinforced plastics. Other types of glass used are A-glass (Alkali-lime glass with little or no boron oxide), E-CR-glass (Electrical/Chemical Resistance; alumino-lime silicate with less than 1% w/w alkali oxides, with high acid resistance), C-glass (alkali-lime glass with high boron oxide content, used for glass staple fibers and insulation), D-glass (borosilicate glass, named for its low dielectric constant), R-glass (alumino silicate glass without MgO and CaO with high mechanical requirements as reinforcement), and S-glass (alumino silicate glass without CaO but with high MgO content with high tensile strength).
Pure silica (silicon dioxide), when cooled as fused quartz into a glass with no true melting point, can be used as a glass fiber for fiberglass, but has the drawback that it must be worked at very high temperatures. In order to lower the necessary work temperature, other materials are introduced as "fluxing agents" (i.e., components to lower the melting point). Ordinary A-glass ("A" for "alkali-lime") or soda lime glass, crushed and ready to be remelted, as so-called cullet glass, was the first type of glass used for fiberglass. E-glass ("E" because of initial electrical application), is alkali-free, and was the first glass formulation used for continuous filament formation. It now makes up most of the fiberglass production in the world, and also is the single largest consumer of boron minerals globally. It is susceptible to chloride ion attack and is a poor choice for marine applications. S-glass ("S" for "Strength") is used when high tensile strength (modulus) is important, and is thus important in composites for building and aircraft construction. The same substance is known as R-glass ("R" for "reinforcement") in Europe. C-glass ("C" for "chemical resistance") and T-glass ("T" is for "thermal insulator" – a North American variant of C-glass) are resistant to chemical attack; both are often found in insulation-grades of blown fiberglass. Fiberglass. Redorbit.com (2014-06-20). Retrieved on 2016-06-02.
+Common Fiber Categories and Associated Characteristic (2025). 9781627080118, ASM International. ISBN 9781627080118
! Category
! Characteristic | |
A, alkali | Soda lime glass/ high alkali |
C, chemical | High chemical resistance |
D, dielectric | Low dielectric constant |
E, electrical | Low electrical conductivity |
M, modulus | High tensile modulus |
S, strength | High tensile strength |
Special Purpose | |
ECR | Long term acid resistance and short term alkali resistance |
R and Te | High tensile strength and properties at high temperatures |
The vitreous and states of silica (glass and quartz) have similar energy levels on a molecular basis, also implying that the glassy form is extremely stable. In order to induce crystallization, it must be heated to temperatures above 1200 °C for long periods of time.
Although pure silica is a perfectly viable glass and glass fiber, it must be worked with at very high temperatures, which is a drawback unless its specific chemical properties are needed. It is usual to introduce impurities into the glass in the form of other materials to lower its working temperature. These materials also impart various other properties to the glass that may be beneficial in different applications. The first type of glass used for fiber was soda lime glass or A-glass ("A" for the alkali it contains). It is not very resistant to alkali. A newer, alkali-free (<2%) type, E-glass, is an alumino-borosilicate glass. C-glass was developed to resist attack from chemicals, mostly that destroy E-glass. T-glass is a North American variant of C-glass. AR-glass is alkali-resistant glass. Most glass fibers have limited solubility in water but are very dependent on pH. Chloride ions will also attack and dissolve E-glass surfaces.
E-glass does not actually melt, but softens instead, the softening point being "the temperature at which a 0.55–0.77 mm diameter fiber 235 mm long, elongates under its own weight at 1 mm/min when suspended vertically and heated at the rate of 5 °C per minute". The strain point is reached when the glass has a viscosity of 1014.5 poise. The annealing point, which is the temperature where the internal stresses are reduced to an acceptable commercial limit in 15 minutes, is marked by a viscosity of 1013 poise.
1080 | ~2 | ||||||
C-glass | 3300 | -- | 69.0 | 2.49 | 7.2 | -- | -- |
1600 | ~20 |
In contrast to carbon fiber, glass can undergo more elongation before it breaks. Thinner filaments can bend further before they break.Hillermeier KH, Melliand Textilberichte 1/1969, Dortmund-Mengede, pp. 26–28, "Glass fiber—its properties related to the filament fiber diameter". The viscosity of the molten glass is very important for manufacturing success. During drawing, the process where the hot glass is pulled to reduce the diameter of the fiber, the viscosity must be relatively low. If it is too high, the fiber will break during drawing. However, if it is too low, the glass will form droplets instead of being drawn out into a fiber.
Bushings are the major expense in fiber glass production. The nozzle design is also critical. The number of nozzles ranges from 200 to 4000 in multiples of 200. The important part of the nozzle in continuous filament manufacture is the thickness of its walls in the exit region. It was found that inserting a counterbore here reduced wetting. Today, the nozzles are designed to have a minimum thickness at the exit. As glass flows through the nozzle, it forms a drop which is suspended from the end. As it falls, it leaves a thread attached by the meniscus to the nozzle as long as the viscosity is in the correct range for fiber formation. The smaller the annular ring of the nozzle and the thinner the wall at exit, the faster the drop will form and fall away, and the lower its tendency to wet the vertical part of the nozzle. The surface tension of the glass is what influences the formation of the meniscus. For E-glass it should be around 400 mN/m.
The attenuation (drawing) speed is important in the nozzle design. Although slowing this speed down can make coarser fiber, it is uneconomic to run at speeds for which the nozzles were not designed.
Studies on rats conducted during the 1970s found that fibrous glass of less than 3 Micrometre in diameter and greater than 20 μm in length is a "potent carcinogen". Likewise, the International Agency for Research on Cancer found it "may reasonably be anticipated to be a carcinogen" in 1990. However fiberglass is usually manufactured with greater diameters than 3 μm. The American Conference of Governmental Industrial Hygienists, on the other hand, says that there is insufficient evidence, and that glass fiber is in .
The North American Insulation Manufacturers Association (NAIMA) claims that glass fiber is fundamentally different from asbestos, since it is man-made instead of naturally occurring. They claim that glass fiber "dissolves in the lungs", while asbestos remains in the body for life. Although both glass fiber and asbestos are made from silica filaments, NAIMA claims that asbestos is more dangerous because of its crystalline structure, which causes it to cleave into smaller, more dangerous pieces, citing the U.S. Department of Health and Human Services:
A 1998 study using rats found that the biopersistence of synthetic fibers after one year was 0.04–13%, but 27% for amosite asbestos. Fibers that persisted longer were found to be more carcinogenic.
As with many other composite materials (such as reinforced concrete), the two materials act together, each overcoming the deficits of the other. Whereas the plastic resins are strong in compressive loading and relatively weak in tensile strength, the glass fibers are very strong in tension but tend not to resist compression. By combining the two materials, GRP becomes a material that resists both compressive and tensile forces well.Erhard, Gunter. Designing with Plastics. Trans. Martin Thompson. Munich: Hanser Publishers, 2006. The two materials may be used uniformly or the glass may be specifically placed in those portions of the structure that will experience tensile loads.
Open-weave glass fiber grids are used to reinforce asphalt pavement. Non-woven glass fiber/polymer blend mats are used saturated with asphalt emulsion and overlaid with asphalt, producing a waterproof, crack-resistant membrane. Use of glass-fiber reinforced polymer rebar instead of steel rebar shows promise in areas where avoidance of steel corrosion is desired.
Uses
Potential uses
Role of recycling in glass fiber manufacturing
See also
Notes and references
External links
|
|